33 research outputs found

    Dendritic subglacial drainage systems in cold glaciers formed by cut-and-closure processes

    Get PDF
    The routing and storage of meltwater and the configuration of drainage systems in glaciers exert a profound influence on glacier behaviour. However, little is known about the hydrological systems of cold glaciers, which form a significant proportion of the total glacier population in the climate sensitive region of the High Arctic. Using glacio-speleological techniques, we obtained direct access to explore and survey three conduit systems and one moulin within the tongue area of Tellbreen, a small cold-based valley glacier in central Spitsbergen. More than 600 m of conduits were surveyed and mapped in plan, profile and cross-section view to analyse the configuration of the drainage system. The investigations revealed that cold-based glaciers can exhibit a dendritic drainage network with supra-, en- and subglacial components formed most likely by cut-and-closure processes as well as surface-to-bed drainage via moulins. Furthermore, we observed that water is stored within the glacier and released gradually via subglacial conduits during the winter months, forming a large and active icing in the proglacial area. The presence of supra-, en- and subglacial components, the surface-to-bed moulin and the dendritic subglacial drainage network suggest that existing models and understanding of the hydrology of cold glaciers needs to be re-evaluated, mostly concerning the different possible pathways and processes that form the hydrological system

    Imaging spectroscopy to assess the composition of ice surface materials and their impact on glacier mass balance

    Get PDF
    Glacier surfaces are not only composed of ice or snow but are heterogeneous mixtures of different materials. The occurrence and dynamics of light-absorbing impurities affect ice surface characteristics and strongly influence glacier melt processes. However, our understanding of the spatial distribution of impurities and their impact on ice surface characteristics and the glacier's energy budget is still limited. We use imaging spectroscopy in combination with in-situ experiments to assess the composition of ice surface materials and their respective impact on surface albedo and glacier melt rates. Spectroscopy data were acquired in August 2013 using the Airborne Prism EXperiment (APEX) imaging spectrometer and were used to map the abundances of six predominant surface materials on Glacier de la Plaine Morte, Swiss Alps. A pixel-based classification revealed that about 10% of the ice surface is covered with snow, water or debris. The remaining 90% of the surface can be divided into three types of glacier ice, namely ~ 7% dirty ice, ~ 43% pure ice and ~ 39% bright ice. Spatially distributed spectral albedo derived from APEX reflectance data in combination with in-situ multi-angular spectroscopic measurements was used to analyse albedo patterns present on the glacier surface. About 85% of all pixels exhibit a low albedo between 0.1 and 0.4 (mean albedo 0.29 ± 0.12), indicating that Glacier de la Plaine Morte is covered with a significant amount of light-absorbing impurities, resulting in a strong ice-albedo feedback during the ablation season. Using a pixel-based albedo map instead of a constant albedo for ice (0.34) as input for a mass balance model revealed that the glacier-wide total ablation remained similar (10% difference). However, the large local variations in mass balance can only be reproduced using the pixel-based albedo derived from APEX, emphasizing the need to quantify spatial albedo differences as an important input for glacier mass balance models

    Change detection of bare-ice albedo in the Swiss Alps

    Get PDF
    Albedo feedback is an important driver of glacier melt over bare-ice surfaces. Light- absorbing impurities strongly enhance glacier melt rates but their abundance, composition and variations in space and time are subject to considerable uncertainties and ongoing scientific debates. In this study, we assess the temporal evolution of shortwave broadband albedo derived from 15 end-of-summer Landsat scenes for the bare-ice areas of 39 large glaciers in the western and southern Swiss Alps. Trends in bare-ice albedo crucially depend on the spatial scale considered. No significant negative temporal trend in bare-ice albedo was found on a regional to glacier-wide scale. However, at higher spatial scales, certain areas of bare ice, including the lowermost elevations and margins of the ablation zones, revealed significant darkening over the study period 1999 to 2016. A total glacier area of 13.5 km2 (equivalent to about 12 % of the average end-of-summer bare-ice area in the study area) exhibited albedo trends significant at the 95 % confidence level or higher. Most of this area was affected by a negative albedo trend of about −0.05 decade−1. Generally, bare-ice albedo exhibits a strong interannual variability, caused by a complex interplay of meteorological conditions prior to the acquisition of the data, local glacier characteristics and the date of the investigated satellite imagery. Although a darkening of glacier ice was found to be present over only a limited region, we emphasize that due to the recent and projected growth of bare-ice areas and prolongation of the ablation season in the region, the albedo feedback will considerably enhance the rate of glacier mass loss in the Swiss Alps in the near future

    Cross-comparison of albedo products for glacier surfaces derived from airborne and satellite (sentinel-2 and landsat 8) optical data

    Get PDF
    Surface albedo partitions the amount of energy received by glacier surfaces from shortwave fluxes and modulates the energy available for melt processes. The ice- albedo feedback, influenced by the contamination of bare-ice surfaces with light- absorbing impurities, plays a major role in the melting of mountain glaciers in a warming climate. However, little is known about the spatial and temporal distribution and variability of bare-ice glacier surface albedo under changing conditions. In this study, we focus on two mountain glaciers located in the western Swiss Alps and perform a cross-comparison of different albedo products. We take advantage of high spectral and spatial resolution (284 bands, 2 m) imaging spectrometer data from the Airborne Prism Experiment (APEX) and investigate the applicability and potential of Sentinel-2 and Landsat 8 data to derive broadband albedo products. The performance of shortwave broadband albedo retrievals is tested and we assess the reliability of published narrow-to-broadband conversion algorithms. The resulting albedo products from the three sensors and different algorithms are further cross-compared. Moreover, the impact of the anisotropy correction is analysed depending on different surface types. While degradation of the spectral resolution impacted glacier-wide mean albedo by about 5%, reducing the spatial resolution resulted in changes of less than 1%. However, in any case, coarser spatial resolution was no longer able to represent small-scale variability of albedo on glacier surfaces. We discuss the implications when using Sentinel-2 and Landsat 8 to map dynamic glaciological processes and to monitor glacier surface albedo on larger spatial and more frequent temporal scales

    Revealing four decades of snow cover dynamics in the Hindu Kush Himalaya

    Get PDF
    Knowledge about the distribution and dynamics of seasonal snow cover (SSC) is of high importance for climate studies, hydrology or hazards assessment. SSC varies considerably across the Hindu Kush Himalaya both in space and time. Previous studies focused on regional investigations or the influence of snow melt on the local hydrological system. Here, we present a systematic assessment of metrics to evaluate SSC dynamics for the entire HKH at regional and basin scale based on AVHRR GAC data at a 0.05° spatial and daily temporal resolution. Our findings are based on a unique four-decade satellite-based time series of snow cover information. We reveal strong variability of SSC at all time scales. We find significantly decreasing SSC trends in individual summer and winter months and a declining tendency from mid-spring to mid-fall, indicating a shift in seasonality. Thanks to this uniquely spatio-temporally resolved long-term data basis, we can particularly highlight the unique temporally variable character of seasonal snow cover and its cross-disciplinary importance for mountain ecosystems and downstream regions

    Former dynamic behaviour of a cold-based valley glacier on Svalbard revealed by basal ice and structural glaciology investigations

    Get PDF
    H.L. was funded by a UK Natural Environment Research Council (NERC) PhD studentship (NE/I528050/1), the Queen Mary Postgraduate Research Fund, and an Arctic Field Grant from the Research Council of Norway. E.J.F. was funded by a NERC PhD studentship as part of the GAINS (Glacial Activity in Neoproterozoic Svalbard) grant (NE/H004963/1). K.N. was funded by an Arctic Field Grant, the Swiss Society for Speleology, and the travel grant commission of the Swiss Academy of Science.Large numbers of small valley glaciers on Svalbard were thicker and more extensive during the Little Ice Age (LIA), demonstrated by prominent ice-cored moraines up to several kilometres beyond present-day margins. The majority of these glaciers have since experienced a long period of strongly negative mass balance during the 20th century and are now largely frozen to their beds, indicating they are likely to have undergone a thermal transition from a polythermal to a cold-based regime. We present evidence for such a switch by reconstructing the former flow dynamics and thermal regime of Tellbreen, a small cold-based valley glacier in central Spitsbergen, based on its basal sequence and glaciological structures. Within the basal sequence, the underlying matrix-supported diamict is interpreted as saturated subglacial traction till which has frozen at the bed, indicating that the thermal switch has resulted in a cessation of subglacial sediment deformation due to freezing of the former deforming layer. This is overlain by debris-poor dispersed facies ice, interpreted to have formed through strain-induced metamorphism of englacial ice. The sequential development of structures includes arcuate fracture traces, interpreted as shear planes formed in a compressive/transpressive stress regime; and fracture traces, interpreted as healed extensional crevasses. The formation of these sediment/ice facies and structures is indicative of dynamic, warm-based flow, most likely during the LIA when the glacier was significantly thicker.Publisher PDFPeer reviewe

    The Impact of Bare Ice Duration and Geo-Topographical Factors on the Darkening of the Greenland Ice Sheet

    Get PDF
    Dark (low albedo) surface ice on the Greenland Ice Sheet enhances melting and subsequent runoff, a major mass loss contributor during the ablation season. The accumulation of both biological (e.g., glacier ice algae) and abiotic (e.g., mineral dust) light-absorbing particulates are important darkening factors, that are potentially influenced by the duration of snow-free, bare ice (a phenological factor), and other geo-topographical factors such as elevation, slope, aspect and the distance from the ice margin. Here, we present the first medium-resolution (30 m) analysis of the phenological and geo-topographical controls on the distribution of dark ice in SE and SW Greenland from statistical analysis of data derived from a harmonized satellite albedo product and ArcticDEM. The duration of bare ice primarily controls the distribution of dark surface ice, allowing for algae growth on inland ice surfaces in particular, whereas geo-topographical factors are only secondary controls

    Morphology, flow dynamics and evolution of englacial conduits in cold ice

    Full text link
    Meltwater routing through ice masses exerts a fundamental control over glacier dynamics and mass balance, and proglacial hydrology. However, despite recent advances in mapping drainage systems in cold, Arctic glaciers, direct observations of englacial channels and their flow conditions remain sparse. Here, using Terrestrial Laser Scanning (TLS) surveys of the main englacial channel of cold-based Austre Brøggerbreen (Svalbard), we map and compare an entrance moulin reach (122 m long) and exit portal reach (273 m long). Analysis of channel planforms, longitudinal profiles, cross-sections and morphological features reveals evidence of spatial variations in water flow conditions and channel incision mechanisms, and the presence of vadose, epiphreatic and phreatic conditions. The entrance reach, located at the base of a perennial moulin, was characterised by vadose, uniform, channel lowering at annual timescales, evidenced by longitudinal grooves, whereas the exit portal reach showed both epiphreatic and vadose conditions, along with upstream knickpoint migration at intra-annual timescales. Fine-scale features, including grooves and scallops, were readily quantified from the TLS point cloud, highlighting the capacity of the technique to inform palaeoflow conditions, and reveal how pulses of meltwater from rainfall events may adjust englacial conduit behaviour. With forecasts of increasing Arctic precipitation in the coming decades, and a progressively greater proportion of glaciers comprising cold ice, augmenting the current knowledge of englacial channel morphology is essential to constrain future glacier hydrological system change

    Storage and export of microbial biomass across the western Greenland Ice Sheet

    Get PDF
    The Greenland Ice Sheet harbours a wealth of microbial life, yet the total biomass stored or exported from its surface to downstream environments is unconstrained. Here, we quantify microbial abundance and cellular biomass flux within the near-surface weathering crust photic zone of the western sector of the ice sheet. Using groundwater techniques, we demonstrate that interstitial water flow is slow (~10−2 m d−1), while flow cytometry enumeration reveals this pathway delivers 5 × 108 cells m−2 d−1 to supraglacial streams, equivalent to a carbon flux up to 250 g km−2 d−1. We infer that cellular carbon accumulation in the weathering crust exceeds fluvial export, promoting biomass sequestration, enhanced carbon cycling, and biological albedo reduction. We estimate that up to 37 kg km−2 of cellular carbon is flushed from the weathering crust environment of the western Greenland Ice Sheet each summer, providing an appreciable flux to support heterotrophs and methanogenesis at the bed
    corecore